An ELLAM Scheme for Advection-Dispersion Equations in Two Dimensions

نویسندگان

  • Hong Wang
  • Helge K. Dahle
  • Richard E. Ewing
  • Magne S. Espedal
  • Robert C. Sharpley
چکیده

We develop an ELLAM (Eulerian-Lagrangian localized adjoint method) scheme to solve twodimensional advection-dispersion equations with all combinations of in ow and out ow Dirichlet, Neumann, and ux boundary conditions. The ELLAM formalism provides a systematic framework for implementation of general boundary conditions, leading to mass-conservative numerical schemes. The computational advantages of the ELLAM approximation have been demonstrated for a number of one-dimensional transport systems; practical implementations of ELLAM schemes in multiple spatial dimensions that require careful algorithm development are discussed in detail in this paper. Extensive numerical results are presented to compare the ELLAM scheme with many widely used numerical methods and to demonstrate the strength of the ELLAM scheme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An ELLAM Scheme for Advection-Diffusion Equations in Two Dimensions

We develop an Eulerian–Lagrangian localized adjoint method (ELLAM) to solve two-dimensional advection-diffusion equations with all combinations of inflow and outflow Dirichlet, Neumann, and flux boundary conditions. The ELLAM formalism provides a systematic framework for implementation of general boundary conditions, leading to mass-conservative numerical schemes. The computational advantages o...

متن کامل

An Eulerian-lagrangian Localized Adjoint Method for Two-dimensional Advection-diffusion Equations and Its Comparison to Other Schemes

We develop an ELLAM (Eulerian-Lagrangian localized adjoint method) scheme to solve two-dimensional advection-diiusion equations with all combinations of innow and outtow Dirichlet, Neumann, and ux boundary conditions. The ELLAM formalism provides a systematic framework for implementation of general boundary conditions, leading to mass-conservative numerical schemes. The computational advantages...

متن کامل

An ELLAM Scheme for Advection-Di usion Equations in Multi-Dimensions

Advection-diiusion equations describe the transport of solutes in groundwater and surface water, the movement of aerosols and trace gases in the atmosphere, and many problems in other important applications. They often cause serious numerical diiculties. Classical space-centered or upwind numerical methods tend to yield numerical solutions with various combinations of excessive oscillations and...

متن کامل

A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998